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Application of minimal subtraction renormalization to crossover behavior
near the 3He liquid-vapor critical point
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Parametric expressions are used to calculate the isothermal susceptibility, specific heat, order parameter, and
correlation length along the critical isochore and coexistence curve from the asymptotic region to crossover
region. These expressions are based on the minimal-subtraction renormalization scheme within thef4 model.
Using two adjustable parameters in these expressions, we fit the theory globally to recently obtained experi-
mental measurements of isothermal susceptibility and specific heat along the critical isochore and coexistence
curve, and early measurements of coexistence curve and light scattering intensity along the critical isochore of
3He near its liquid-vapor critical point. The theory provides good agreement with these experimental measure-
ments within the reduced temperature rangeutu<231022.
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I. INTRODUCTION

It is well known that thermodynamic quantities exhib
singularities asymptotically close to the critical point. T
power-law behavior of these singularities, characterized
critical exponents and the concept of universality and s
ing, has been successfully described by renormalizat
group ~RG! theory. Away from the asymptotic region, the
modynamic quantities of real physical systems deviate fr
simple power-law behavior. However, RG theory can s
provide insight in understanding critical crossover behav

There are two main field-theoretical renormalizatio
group schemes to treat critical-to-classical crossover p
nomena. Dohm and co-workers developed the minim
subtraction renormalization~MSR! scheme @1# while
Bagnuls and Bervillier developed the massive renormal
tion ~MR! scheme@2#. Both of these theories used the Bor
resummation technique to describe the crossover behavi
the f4 model in anyO(n) universality class and in thre
dimensions. The difference between the two schemes
discussed in Ref.@1#. These field-theoretical crossover the
ries were improved over the years as asymptotic theo
became more accurate@3#. Recently, Larinet al. improved
the MSR expressions for the specific heat and compared
results with the superfluid helium (n52) system@4#. Bag-
nuls and Bervillier have also improved their theory to ma
the recent asymptotic values for exponents and leading
plitude ratios@5#. Both renormalization schemes can provi
crossover functional forms for thermal properties with
minimal set of fluid-dependent adjustable parameters. H
ever, a direct comparison between these recent theore
predictions and different experimental measurements n
the liquid-vapor critical point (n51) has been lacking.

In this paper we will present a direct comparison betwe
the MSR field-theoretical crossover functions and vario
experimental measurements near the liquid-gas critical p
of 3He. The comparison using the MR theory will be pu
lished elsewhere.

The paper is divided into two parts. In the first part, w
briefly summarize the MSR functional expressions for s
1063-651X/2003/67~2!/021106~20!/$20.00 67 0211
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ceptibility, specific heat, coexistence curve, and correlat
length from previous work@1,6–8#. In addition, we derived
within the MSR framework RG functional expressions f
the asymptotic critical amplitudes of the susceptibility a
coexistence curve as well as the first coefficients in a Weg
expansion for susceptibility, specific heat, coexistence cu
and correlation length. From these expressions, unive
amplitude ratios for theO(1), three-dimensional system ar
calculated and compared with the most recent values f
Bagnulset al. @5# and Fisheret al. @9#.

The second part of the paper includes the results of M
functional fits to experimental measurements. In our pre
ous work, we analyzed the isothermal susceptibility of3He
along the critical isochore aboveTc using theoretical expres
sions based upon the minimal-subtraction scheme@10#. In
this work, we combine that analysis with susceptibility me
surements along the coexistence curve and specific heat
surements along the critical isochore@11#. Measurements of
coexistence curve and the light scattering intensity near
critical point of 3He @12,13# are also analyzed.

II. THEORETICAL EXPRESSIONS

The Hamiltonian for thef4 model in three dimensions
(d53) is

Hf5E d3x$ 1
2 r 0f0

21 1
2 ~¹f0!21u0f0

4%, ~1!

wheref0 is the order parameter field, whose statistical me
value is the physical order parameter of a given system.
parameteru0 is the fourth-order coupling constant. The p
rameter r 0 is related to the reduced temperaturet[(T
2Tc)/Tc by

r 02r 0c5a0t, ~2!

wherea0 is a nonuniversal constant andr 0c is the value at
the critical point forr 0. It is important to note that the tota
Hamiltonian is the sum ofH5Hf1H0, where H0 is the
©2003 The American Physical Society06-1
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analytic background free energy. Since the liquid-vapor cr
cal point has a single component order parameter and
longs to theO(1) universality class, we haven51.

The dimensionless bare order parameter fieldf0 and the
bare coupling parametersu0 andr 0 are renormalized to@Eqs.
~S2.11! and ~S2.12! of Ref. @6##

f5Zf~u,e!21/2f0 , ~3!

u5m21Zu~u,e!21Zf~u,e!2A3u0 , ~4!

r 5at5Zr~u,e!21~r 02r 0c!, ~5!

where A35(4p)21 is a geometric factor ande542d51
for dimensiond53. TheZ factors are associated with the
respective field-theoretic functions@1#

z r~u!5m]mln Zr~u,e!21u0 , ~6!

zf~u!5m]mln Zf~u,e!21u0 , ~7!

bu~u!5u@211m]m~Zu
21Zf

2 !u0#52F d

du
ln~uZuZf

22!G21

,

~8!

where the index 0 means differentiation at fixedr 0 , f0, and
u0.

By introducing a flow parameterl, the effective coupling
u( l ) satisfies the flow equation

l
du~ l !

dl
5bu„u~ l !…. ~9!

The flow parameterl is related to the correlation length by

j~ l !5~m l !21, ~10!

with m21 being an arbitrary reference length. The flow p
rameterl 50 corresponds to the Ising fixed pointu( l 50)
5u* , which is determined frombu(u* )50. The effective
coupling r ( l ) satisfies the flow equation

l
dr~ l !

dl
5r ~ l !z r„u~ l !…. ~11!

The flow parameterl 51 is an arbitrary reference point, a
which the nonuniversal initial values areu( l 51)5u and
r (1)5r 5at.

The field-theoretic functionsz r(u),zf(u), and bu(u) in
Eqs.~6!–~8! are known up to five-loop order in perturbatio
expansions aroundu50 @1#. However, the expansions do n
converge away fromu50. Hence Borel resummations we
used on the expansions to calculate the values of these f
tions over the range 0,u<u* . For most investigations, se
for instance Refs.@6–8#, only the function values at the fixe
point u* were calculated using the Borel resummations
02110
i-
e-

-
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n

the five-loop expansions. The function values over the ra
0,u,u* were obtained using up to two-loop order expre
sions with extrapolation terms added in order to reprod
the values at the fixed point@1#. For a system of dimension
d53 and single component order parametern51, one ob-
tains

z r~u!512u2120u21a1u32a2u4, ~12!

zf~u!5224u21a3u3, ~13!

bu~u!52u136u2~11a4u!/~11a5u!. ~14!

Herea1 througha5 are the coefficients for the extrapolatio
terms with values listed in Appendix A. Using these fun
tions and the flow equations, thermal properties along
critical isochore and coexistence curve can be calcula
from the asymptotic to crossover regions using the ini
values for Eqs.~9! and ~11!, u5u( l 51) and a5a( l 51),
and the arbitrary length scalem21 in Eq. ~10!.

A. Reduced temperature

Within the MSR scheme, the expression for the reduc
temperature in terms of the flow parameterl can be derived
as follows. The reduced temperaturet and the flow paramete
l can be linked using Eqs.~S4.25! and ~S4.26! Ref. @1# and
Eq. ~H2.9! of Ref. @7#, together with the solution of Eq.~11!,

r ~ l !5r ~1!expE
1

l

z r

dl8

l 8
5autuexpE

1

l

z r

dl8

l 8
5b6„u~ l !…m2l 2,

~15!

with

b1„u~ l !…5Q„u~ l !…, ~16!

b2„u~ l !…5 3
2 2Q„u~ l !…. ~17!

Here ‘‘1 ’’ is for T.Tc and ‘‘2 ’’ is for T,Tc . Krauseet al.
@8# determined a one-loop expression plus a higher-order
trapolation forQ(u) given by @Eq. ~K3.5!#

Q~u!511bQu2ln~cQu!, ~18!

wherebQ andcQ are the extrapolation coefficients with th
values given in Table III in Appendix A.

By adding and subtractingz r* 5z r(u* ) in the integrand of
Eq. ~15! and using the identityn21522z r* , wheren is the
critical exponent of correlation lengthj, one arrives at

autuexpE
1

l

~z r2z r* !
dl8

l 8
5b6~ l !m2l 1/n. ~19!

By rearranging Eq.~19!, one obtains the following expres
sion for the reduced temperature:
6-2
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utu5b6~ l !t0l 1/nexp@2Fr~ l !#, ~20!

with

t05
m2

a
exp@Fr~1!# ~21!

and

Fr~ l !5E
0

l dl8

l 8
@z r„u~ l 8!…2z r~u* !#

5E
u*

u( l )z r~u8!2z r~u* !

bu~u8!
du8. ~22!

B. Susceptibility

1. General expression

The following expressions for the dimensionless susc
tibility xT* [x6 were given in Refs.@7,8#, respectively, for
T.Tc @Eq. ~K2.7!# andT,Tc @Eq. ~H2.16!#:

x65
Zf~u!

m2l 2f 6„u~ l !…
expE

l

1

zf

dl8

l 8
. ~23!

The amplitude functions,f 6 , were expressed to two-loo
order plus a higher-order extrapolation@Eqs. ~K3.1! and
~H4.2!#, to give

f 1@u#512
92

9
u2~11bxu! ~T.Tc!,

f 2@u#5@1218u1159.56u2~11dxu!#21 ~T,Tc!,
~24!

wherebx and dx are the extrapolation coefficients with th
values given in Table III in Appendix A.

The minimal renormalization factorZf in Eq. ~23! is
given by @Eq. ~K A12!#

Zf~u!215expE
0

u

du8
zf~u8!

bu~u8!
. ~25!

The expression

x65x0l 2g/n
exp@2Ff„u~ l !…#

f 6„u~ l !…
~26!

can be obtained by adding and subtractingzf* 5zf(u* ) in
the integrand of Eq.~23!, and using the relationszf* 52h
@1# andg5n(22h), whereh is the critical exponent of the
fluctuation correlation at the critical point andg is the criti-
cal exponent of susceptibility. In Eq.~26!

x05m22Zf~u!exp@Ff~1!# ~27!
02110
-

and

Ff~ l !5E
0

l dl8

l 8
@zf„u~ l 8!…2zf~u* !#

5E
u*

u( l )zf~u8!2zf~u* !

bu~u8!
du8. ~28!

Using Eq.~10! and g5n(22h), Eq. ~26! can be rewritten
as

x65j22hx0m22h
exp@2Ff„u~ l !…#

f 6„u~ l !…
. ~29!

Thus, in the asymptotic regime (Ff→0),

x65Dj22h, ~30!

with a nonuniversal proportionality constantD
[x0m22h f 6

21(u* ).

2. Critical Amplitudes

Within the puref4 model, the standard Wegner expansi
for the susceptibility is given by

x65G0
6utu2g~11G1

6utuD1G2
6utu2D1••• !, ~31!

whereG0
6 are the leading asymptotic critical amplitudes,G1

6

are the first Wegner expansion amplitudes above and be
the transition, andD is the correction-to-scaling exponen
The details of the derivations of the leading and first Weg
critical amplitudes are given in Appendix B. Here we list th
derived expressions for the critical amplitudes,

G0
65

x0~b6* t0!g

f 6~u* !
, ~32!

G1
65S g

z r8

v
2g

b68

b6
1

zf8

v
1

f 68

f 6
DU

u*

u* 2u

~b6* t0!D, ~33!

with D5nv andv5dbu /duuu* .

C. Specific Heat

1. General expressions

The total specific heat is usually separated as

C65CB1Cf
6 , ~34!

where the termCB.0 represents an analytic ‘‘background
contribution from the analytic background free energyH0,
and Cf

6 represents the critical contribution from order p
rameter fluctuations. Here ‘‘1 ’’ is for the specific heat above
Tc along the critical isochore, ‘‘2 ’’ is for below Tc in coex-
isting phases.
6-3
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The critical specific heatCf
6 derived from the Hamil-

tonian expressed in Eq.~1! has two representations withi
the MSR scheme. These two representations are derived
multiplicative and additive renormalization as detailed
Ref. @6#. The most recent work by Larinet al. @4# used the
representation via additive renormalization that we will u
in this paper.

The critical specific heatCf
6 per unit volume nearTc is

expressed by@Eq. ~S2.36! or ~L3.3!# @4,6#

Cf
65Tc

2V21
]2

]T2 lnE Df exp2Hf

5 1
4 a2m21A3K6„u~ l !…expE

u

u( l )2z r~u8!21

bu~u8!
du8.

~35!

The amplitude functionsK6(u) are given by

K6~u!5F6~u!2A~u!. ~36!

The functionsF6(u) for n51 can be expressed by a two
loop calculation plus a higher-order extrapolation@Eqs.
~K3.4! @8# and ~H4.4! @7##,

F6@u#5H 2126u~11bFu! ~T.Tc!,

~2u!2124~11dFu! ~T,Tc!,
~37!

wherebF anddF are the extrapolation coefficients with th
values given in Table III in Appendix A. The functionA(u)
in Eq. ~36! is governed by

l
dA„u~ l !…

dl
54B„u~ l !…1$122z r„u~ l !…%A„u~ l !…, ~38!

with A(u50)524B(u50). The functionB(u) has been
calculated toO(u5) for any givenn @Eq. ~L2.21!# @4#. How-
ever, the five-loop Borel resummation ofB(u) was only per-
formed forn51 atu* . Hence a new extrapolation term wit
a coefficientbB is added to the two-loop expression@4# in
order to satisfyB(u* ,n51),

B~u!5 1
2 19~11bBu!u2. ~39!

At the fixed pointu5u* , ldA„u( l )…/dl5bu(u)dA(u)/du
50 sincebu(u* )50, and Eq.~38! leads to

A* [A~u* !52
4nB~u* !

a
, ~40!

where 2z r* 21[2a/n @1# is used witha being the critical
exponent for specific heat at constant volume.

The integral in the exponential of Eq.~35! can be rewrit-
ten as
02110
via

e

E
1

l dl8

l 8
~2z r21!52E

1

l dl8

l 8
~z r2z r* !1 ln l 2a/n, ~41!

using 2z r* 21[2a/n. The expression for the specific he
from the additive renormalization can now be rewritten a

Cf
65

a2

16pm
K6~ l !l 2a/nexp@2Fr~ l !#exp@22Fr~1!#

5C0l 2a/nexp@2Fr~ l !#K6„u~ l !…, ~42!

whereFr( l ) is given by Eq.~22! andC0 is defined as

C0[
a2

16pm
exp@22Fr~1!#5

m3

16pt0
2

. ~43!

2. Critical Amplitudes

The standard Wegner expansion within the puref4 model
for specific heat can be written as

C65A0
6utu2a~11A1

6utuD1A2
6utu2D1••• !1Bcr1CB ,

~44!

whereBcr is a constant background induced by long-ran
correlations between the fluctuations. The experiment
measured constant background is the sum ofBcr and the
analytic backgroundCB .

The expression for the Wegner expansion of the spec
heat via multiplicative renormalization was derived a
given in Eqs.~S4.23! and~S4.24! of Ref. @6#. In Appendix C,
we derive the expressions for the critical amplitudes and
critical backgroundBcr for the representation via additiv
renormalization, using the technique that is consistent w
the one used for susceptibility. The results of these der
tions are

A0
65C0~b6* t0!a~F6* 2A* !, ~45!

A1
65F 1

A* 2F6*
S F68 2

2n

D2a
~2B82A* z r8! D

2~22a!
z r8

v
2a

b68

b6
GU

u*

u* 2u

~b6* t0!D, ~46!

2
Bcr

C0
5A~u!2A* 1

2n

D2a
~2B82A* z r8!~u* 2u!.

~47!

The variables with a prime in Eqs.~46! and~47! are deriva-
tives with respect tou. The right-hand side of Eq.~47! is
negative for any givenu. Hence one hasBcr,0 sinceC0
.0 from Eq.~43!.
6-4
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D. Coexistence curve

1. General expressions

In the liquid-vapor coexisting phases belowTc , the den-
sity differenceDrL,V[rL,V /rc21 is the statistical mean o
the order parameter field̂f&. There is no asymmetry be
tween DrL and DrV within the f4 model. Schloms and
Dohm have given an expression for the square of the ph
cal order parameter@Eq. ~S3.10!# @6#,

^f&25A3Zf~u! f f„u~ l 2!…j2
21expE

l 2

1

zf

dl8

l 8
. ~48!

Here Zf(u) is given in Eq. ~25!. The amplitude function
f f(u) is expanded in one loop with an extrapolation te
@Eq. ~H4.1!# @7# to yield

f f~u!5~8u!21~11dfu!. ~49!

The correlation length belowTc is linked to the flow param-
eter by l 25(mj2)21. By combining these expressions an
following the derivation of Eq.~26!, one has

^f&25f0
2l 2

2b/n f f„u~ l 2!…exp@2Ff~ l 2!#, ~50!

where 11h52b/n is used and

f0
25~4p!21mZf~u!exp@Ff~1!#, ~51!

with b being the critical exponent of the order parameter

2. Critical Amplitudes

Using Eq.~20! to replacel 2
2b/n in Eq. ~50! and the scaling

relationsg5n(22h), a5223n, and a12b1g52, one
has

^f&56f0t0
2butub @b2~ l 2!#2b@ f f~ l 2!#1/2

3exp@bFr~ l 2!#exp@2Ff~ l 2!/2#. ~52!

Expandingb2( l 2), f f( l 2), Fr( l 2), andFf( l 2) in the same
manner as described in Appendix B, one obtains the Weg
expansion for coexistence curve,

DrL,V56B0utub~11B1utuD!, ~53!

with the leading critical amplitude and the first Wegner a
plitude being, respectively,

B05f0~b2* t0!2b~ f f* !1/2, ~54!

B15S b
b28

b2
2b

z r8

v
2

f f8

2 f f
1

zf8

2v DU
u*

u* 2u

~b2* t0!D
. ~55!
02110
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E. Correlation length

Using Eq.~20! to expressl in terms ofutu, the expression
for dimensionless correlation length~if m21 is taken dimen-
sionless! is derived from Eq.~10! as

jutun5m21@b6„u~ l !…t0#nexp@2nFr~ l !#. ~56!

An expansion of Eq.~56! around u( l );u* to O@(u
2u* )2# leads to

j6utun5m21~b6* t0!n F11nS z r8

v
2

b68

b6
DU

u*

u* 2u

~b6* t0!DutuDG .

~57!

This equation is identical to Eq.~S4.8! of Ref. @6#. By com-
paring Eq.~57! to the standard Wegner expansion form,

jutun5j0
6~11j1

6utuD!, ~58!

one obtains the leading amplitudes and first Wegner cor
tion amplitudes of the correlation length,

j0
65m21~b6* t0!n, ~59!

j1
65nS z r8

v
2

b68

b6
DU

u*

u* 2u

~b6* t0!D. ~60!

F. Universal amplitude ratios

Even though the leading amplitude and subsequent W
ner expansion coefficients are fluid dependent, certain c
bination ratios of these amplitudes are universal. From
equations for the first Wegner amplitudes of the specific h
susceptibility, coexistence curve, and correlation length,
notices that the system-dependent part, (u* 2u)/(t0)D, is the
same in every expression. Therefore the ratio of any of th
first Wegner amplitudes is universal based on the MSRf4

model. These universal ratios have been given for the s
cific heat in Ref.@4# @Eqs.~63!, ~64!, and~68!#. In this paper
we derive the other universal ratios based on the MSRf4

model. From Eqs.~32! and ~33!, one has the universal am
plitude ratios for susceptibility,

G0
1

G0
2 5S b1*

b2*
D g f 2~u* !

f 1~u* !
54.94, ~61!

G1
1

G1
2 5S b2*

b1*
D D g

z r8

v
2g

b18

b1
1

zf8

v
1

f 18

f 1

g
z r8

v
2g

b28

b2
1

zf8

v
1

f 28

f 2

U
u*

50.228. ~62!

From Eqs.~45! and~46!, one obtains the universal amplitud
ratios for specific heat,
6-5
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A0
1

A0
2 5S b1*

b2*
D a 4nB* 1aF1*

4nB* 1aF2*
50.535, ~63!

A1
1

A1
2 51.07. ~64!

Use of the scaling relationa12b1g52 and the combi-
nation of Eqs.~32!, ~45!, and~54! leads to a universal ratio

Rc5
aA0

1G0
1

B0
2

5
aC0x0~F1* 2A* !~b1* t0!a1g

f0
2~b2* t0!22b f f* f 1*

5
a~b1* !a1g~b2* !22b~F1* 2A* !

4 f f* f 1*
50.0580. ~65!

From Eqs.~59! and ~60!, the universal amplitude ratio
for the correlation length are

j0
1

j0
2 5S b1*

b2*
D n

51.42, ~66!

j1
1

j1
2 5S b2*

b1*
D D

z r8

v
2

b18

b1

z r8

v
2

b28

b2

U
u*

51.10. ~67!

From Eqs.~45! and ~59!, one has the universal relatio
between the amplitude of specific heat and correlat
length,

aA0
6~j0

6!35m23C0~b6* t0!a13n~4nB* 1aF6* !

5
1

16p
~b6* !2~4nB* 1aF6* !

5H 0.0206 ~T.Tc!,

0.0134 ~T,Tc!,
~68!

where the scaling relationa13n52 has been used. Equa
tion ~68! is identical to Eq.~S4.22! of Ref. @6#. The evalua-
tion of the right-hand side uses the constants given in
pendix A. A natural extension of Eq.~68! is the universal
relation between specific heat and the correlation len
throughout the crossover region. Using Eqs.~10!, ~20!, and
~42!, and the scaling relationa13n52, one has

Cf
6j6

3 5
b6

2 ~ l !K6~ l !

16putu2
. ~69!

Since there are no fluid-dependent parameters appearin
the right-hand side of Eq.~69!, the product of the critical
specific heat and the cubic of the correlation length is u
versal for any given temperature throughout the crosso
region.
02110
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Table I lists the various universal amplitude ratios deriv
from the minimal-subtraction renormalization scheme, Ba
nuls and Bervillier’s massive-renormalization scheme@5#,
and other methods, such as« expansion, summarized b
Fisher and Zinn@9#. The values given by Bagnuls and Be
villier are closely matched to the values given by Guida a
Zinn-Justin@3# after the readjustment of the Borel resumm
tion criteria @5#. Noticeable differences exist in Table
among various theories. In attempting to explain these
ferences, two factors are important to note. First, we
unable to evaluate the uncertainties of the universal ra
since the uncertainties on the Borel resummations at
fixed pointu* for most of the amplitude functions were no
given in previous studies. Second, Eqs.~33!, ~46!, and ~60!
use the derivatives of Eqs.~12!, ~13!, ~18!, ~24!, ~37!, and
~39!, which could have sizable systematic uncertainti
These equations were only obtained from two-loop calcu
tions and extrapolated to the five-loop fixed point values w
adjustable constants. Hence it is desirable to have these
rivatives calculated at the fixed point with Borel resumm
tions. Then the extrapolation coefficients can be more ac
rately reconstructed, leading to the estimates of the fi
Wegner coefficients with less uncertainties.

III. FIT TO EXPERIMENTAL MEASUREMENTS

The expressions within the MSR model are parametric
susceptibility, specific heat, coexistence curve, and corr
tion length along the critical isochore and coexistence cur
We made a variable change ofl 5exp(2x) in solving those
expressions numerically.x was discretized with 1000 dat
points over the range of2`,x,` to obtain the solution
for u(x) over the range of 0<u(x)<u* . For each thermal
property versus reduced temperature, sayx1 vs t, 1000 data
points were calculated for a look-up table ofx1(xi) vs t(xi)
with i 51, . . .,1000. The intended property was then o
tained for a given reduced temperaturet using a cubic spline.

This MSR model has three system-dependent parame
u, m, anda, which fix the scales foru( l ), j( l ), and t( l ) in

TABLE I. The values of various universal amplitude ratios. T
calculation for this work uses the values of the amplitude functio
at the fixed pointu* given in Table IV and the values of the critica
exponents given by Guida and Zinn-Justin@3#.

Amplitude
ratios This work Ref.@5# Ref. @9#

G0
1/G0

2 4.94 4.7960.10 4.9560.15
A0

1/A0
2 0.535 0.53760.019 0.52360.009

j0
1/j0

2 1.42 1.8960.015

Rc 0.0580 0.057460.0020 0.058160.0010
aA0

1(j0
1)3 0.0206 0.019660.0001 0.018860.00015

aA0
2(j0

2)3 0.0134 0.005360.00025
G1

1/G1
2 0.228 0.21560.029

A1
1/A1

2 1.07 1.3660.47
j1

1/j1
2 1.10

B1 /G1
1 0.76 0.4060.35
6-6
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APPLICATION OF MINIMAL SUBTRACTION . . . PHYSICAL REVIEW E67, 021106 ~2003!
Eqs.~9!, ~10!, and~19!. Hereu( l ), j( l ), andt( l ) are defined
implicitly as functions of the RG flow parameterl. Sincel is
eliminated in final solution, it is clear that one of the thr
amplitudes is redundant. This should not be mistaken a
minimal number of three fitting parameters for a compl
equation of state, while we only fit the thermal propert
along the critical isochore and coexistence curve. In this
per $m,a% are chosen as fitting parameters for a prefixeu
because their combination only appears in the amplitude
the parametric expressions, such ast0 , x0 , C0, etc. Theu
value is chosen based on the consideration that the exp
sions for the first Wegner amplitudes were derived by ign
ing higher-order terms in@u( l )2u* #. Therefore an accurat
determination of the first Wegner amplitudes requiresu to be
close tou* .

Besides$m,a%, the critical temperature can also be a fi
ting parameter. Another adjustable parameter is required
the analytic background contribution to specific heat. In
ting the experimental data,yexpt, to theory, we minimize

x25(
i 51

N S yexpt~xi !2ytheory~xi ,aW !

s i
D 2

. ~70!

Here aW is an array of fitting parameters with the standa
error s given by

s25sy
21S ]y

]xD
aW

2

sx
2 . ~71!

The partial derivative in Eq.~71! is evaluated numerically in
each fitting iteration. Thex in Eq. ~70! is temperature. In our
experiment, the sample temperature was determined fro
resistance measurement having an approximately 10mK un-
certainty, i.e.,sx5131025 K. In fitting the measurement
of isothermal susceptibility and specific heat, we assignsy
5k3y/100, assuming ak% uncertainty in the measuremen

The goodness of a fit is characterized by the value

xn
25

x2

N2M
, ~72!

whereN is the number of data points andM is the number of
fitting parameters.

All the experimentally measured quantities were made
mensionless by expressing them in units of appropriate c
binations of the3He critical temperatureTc53.315 K, criti-
cal density rc50.041 45 g/cm3, and critical pressurePc
51.143105 Pa.

The experimental susceptibilityxT5r(]r/]P)T is scaled
by rc

2/Pc to obtain the dimensionless susceptibilityxT*
[xTPc /rc

2 . The physical order parameterDr[r/rc21 is
already dimensionless. The measured heat capacity had
of @C#5J/K. It was then divided by the fluid volume to hav
a unit of @rCV#5J/(cm3 K). Since the energy unit is@J#
5@P#@V#, a dimensionless specific heat was obtained
CV* [rCVTc /Pc with Pc /Tc50.034 63 J/(cm3 K).
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The critical specific heatCf
6 per unit volume~divided by

Boltzmann’s constantkB) nearTc is given by Eq.~42!. The
volume scaling factor isv05kBTc /Pc , thus the length scal-
ing factor is

l 05v0
1/35~kBTc /Pc!

1/3. ~73!

For 3He, one hasl 057.36 Å. It is assumed thatm is dimen-
sionless in the MSRf4 model expressions withl 0

21 being
the scaling factor, one definesj* [j/ l 0.

A. Fit to susceptibility measurements

The susceptibility along the critical isochore (r5rc) was
determined usingPVT measurements from both side
aroundrc . The susceptibility along the coexistence cur
was also determined usingPVT measurements. For ex
ample, xT

liq was obtained fromPVT measurements forr
.rcoex

liq andxT
vap was obtained fromr,rcoex

vap .
Since xT* varies sharply asr→rc and r→rcoex, the

dominating uncertainty inxT* comes from the uncertainty in
locating eitherrc for measurements aboveTc andr5rcoex
for measurements belowTc . AboveTc , the inflection point
was well confined by the data from the both sides ofrc .
Below Tc , r5rcoex was determined from a kink inP versus
r curve. However, this kink becomes less pronounced aT
→Tc . Based on our observation, we assigned the susce
bility uncertainties to besxT

(T.Tc)50.02xT(T.Tc) and

sxT
(T,Tc)50.1xT(T,Tc).

The result of fitting the susceptibility measurements
both T.Tc andT,Tc to the MSR expression in Eq.~26! is
shown in Fig. 1. The susceptibility was scaled byutug in
order to provide a more sensitive representation of the cr
over behavior and the fitting quality. The dot-dashed strai
lines represent the asymptotic predictions from the MSR

FIG. 1. Fit of the MSRf4 model to3He susceptibility measure
ments for bothT.Tc andT,Tc . u/u* is fixed to be 0.999, while
Tc , m, and a were adjusted. The solid line is the best fit. Th
dot-dashed straight lines represent the asymptotic predictions
the fit.
6-7
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The uncertainties in the amplitudes were deduced from
uncertainties ofm anda in the fit.

Figure 2 showsxn
2 versus (12u/u* ). The goodness o

the fit remains unchanged over the entire range 0,(1
2u/u* ),1. This verifies that only two out of the thre
fluid-dependent parameters are relevant fitting parame
There was no change inxn

2 whenu/u* was also free to be
adjusted in the fit.

Once the initial valueu5u( l 51) for solving the effective
coupling u( l ) is chosen, the remaining two adjustable p
rametersm anda are obtained from the fit, and the temper
ture scaling parametert0 is calculated from Eq.~21! using a
given set of$u,m,a%. Equations~D5! and~D7! in Appendix
D give the power-law dependencesm and a on (12u/u* )
near the fixed pointu* . As a result, the temperature scalet0

depends on (12u/u* )1/D near u* , as given in Eq.~D8!.
Figure 2 showsm, a, and t0 scaled, respectively, by the
power-law dependence on (12u/u* ). The scaleda varies
less than 2% over the entire range of (12u/u* ). The scaled
m and t0 vary less than 2% for (12u/u* ),431023.

Also shown in Fig. 2 are the calculatedG0
1 , and G1

1

versus (12u/u* ) using Eqs.~32! and ~33! for each set of
$u,m,a% from the fit. Using the methods given in Append
D, all the leading critical amplitudes can be demonstra
analytically to be independent of (12u/u* ) near u* . As
expected, Fig. 2 shows numerically thatG0

1 is independent
of (12u/u* ) in the entire range (12u/u* ). Since the ana-
lytical expression forG1

1 , Eq. ~33!, was derived by only
keeping the linear term (12u/u* ), this equation is only
valid as (12u/u* )→0. Figure 2 helps to visualize how
small (12u/u* ) should be to accurately determine the co
rect value of G1. Since G1

1 reaches a plateau for (1
2u/u* )<431023, we fix the value ofu/u* 50.999 in this
work solely for the purpose of calculating the first Wegn
coefficients using derived analytical expressions.

FIG. 2. The susceptibility fitting qualityxn
2 , scaled adjustable

parametersm anda, the resultant temperature scaling factort0, and
critical amplitudes,G0

1 andG1
1 , versus fixed 12u/u* .
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B. Fit to specific heat measurements

The specific heat,CV , near the3He critical point was
measured using a heat pulse method. The tempera
change could be measured very accurately using a mag
susceptibility thermometer with 1-nK resolution. ForT
.Tc , temperature equilibration was very fast due to t
‘‘piston effect’’ @14#, and the uncertainty in the measuredCV
was;1%, i.e.,sCV

(T.Tc)50.01CV(T.Tc). For T,Tc ,
equilibration underwent critical slowing down as the flu
approachedTc . The slowing down was due to the ma
transfer at the meniscus between liquid and vapor. Since
sample cell was not perfectly adiabatic due to its mechan
support and electrical wires, there was some heat loss f
the cell to the surrounding during the long equilibration. T
uncertainty in measuringCV was typically 5%, i.e.,sCV

(T
,Tc)50.05CV(T,Tc).

In fitting CV measurements to the MSRf4 model, an
additional adjustable parameter,CB , appears in Eq.~42!. By
treatingCB as a constant within a small reduced temperat
range aroundTc , the true crossover behavior described
the MSRf4 model can be revealed. Figure 3 shows a fit
theCV measurements for bothT.Tc andT,Tc to the MSR
expression in Eq.~42!. The fit was limited to the reduced
temperature rangeutu<231022, as indicated by an arrow in
the figure. The agreement between the experimental m
surements and the theory is good. The uncertainties in
critical amplitudes and fluctuation-induced background w
error propagated from the uncertainties ofm anda.

The fluctuation-induced background specific heatBcr was
calculated from Eq.~C16! in Appendix C. Its absolute value
is close to that ofCB . As a result, the combined backgroun
specific heat is close to zero for3He as first demonstrate
experimentally by Brown and Meyer@15#.

C. Fit to coexistence curve measurements

The best data for the3He coexistence curve were com
piled in a recent paper by Luijten and Meyer@12#. We apply

FIG. 3. The dimensionless specific heat at constant volume
sus reduced temperature. The symbols represent the experim
measurements. The solid line is the best fit. The dot-dashed str
lines represent the asymptotic predictions from the fit. The arr
indicates the fitting rangeutu<231022.
6-8
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APPLICATION OF MINIMAL SUBTRACTION . . . PHYSICAL REVIEW E67, 021106 ~2003!
the MSRf4 model to the coexistence curve using these d
as shown in Fig. 4. The fit was limited to the range
31024>utu<431022. The lower bound was so chose
since the measurements were affected by the gravity e
for utu,631024 due to a large cell height~4.3 mm! used in
that experiment@16#. The upper bound was so chosen sin
the f4 model was developed for critical phenomena and
not include analytic behavior associated with a system
proaching absolute zero temperature. The standard devia
for uDrL,Vu was approximated based on the percentile de
tion in Fig. 5 of Ref.@16#, namely, 1% atutu5631024 and
0.2% at utu.131022. The standard deviation for reduce
temperature was dT5131025 K divided by Tc
53.3155 K.

The solid line in the figure represents the best fit with o
$m,a% adjusted. The predictedB051.02 is consistent with
the reportedB051.02 in Ref.@12#. The agreement betwee
the model calculation and the experimental data is satis
tory over the fitting range. The systematic difference betw
the MSRf4 model calculation and the measurements o
the fitting range also exists from other theoretical model c
culations@12#.

The systematic deviation between the MSRf4 model cal-
culation and the experimental data over the fitting range m
be due to the fact that there was no proper background
tribution included in the analysis. We attempt in this paper
include the effect of the order parameter saturation as a
sible background contribution. The saturation of order
rameter at absolute zero temperature has been studie
Povodyrevet al. @17# for an ideal Ising model. We propos
an empirical expression that is consistent with that study
the limiting behavior atutu51. Not only does the order pa
rameter saturate to a constant value but its slope also
proaches zero atutu51. In the case of the liquid-vapor sys
tem where the physical order parameter is the normali
density difference from the critical value, the saturati

FIG. 4. Application of the MSRf4 model to the data of the3He
coexistence curve. The solid line is the best fit with$m,a% adjusted.
The dashed line includes the empirical background contribu
with $m,a% fixed from the fit without the background. The do
dashed straight line represents the asymptotic prediction from
fit.
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value is also unity. Our empirical expression, satisfying t
limiting behavior, is

DrL,V5^f&exp~2utu/t1!6b2@12exp~2utu/t2!#. ~74!

In fitting the expression in Eq.~74! to the experimental data
only t1 is adjusted whilet2 andb2 are solved for a givent1
through the constraintsDrL,V561 and dDrL,V /dt50 at
utu51. Near the critical point, the exponential dampings
the first and second terms on the right-hand side of Eq.~74!
are negligibly small as evidenced by the large best fit val
t151.56, t254.55, andb250.921. As can be seen in Fig. 4
the addition of the saturation background~dashed line! only
slightly improves the systematic difference between
theory and the experimental data forutu,431022, although
it represents the data quite well forutu.431022.

D. xT , CV , and zDrL ,Vz joint fit

The good individual fit of the MSRf4 model to isother-
mal susceptibilityxT , specific heatCV , and coexistence
curve uDrL,Vu has been demonstrated. A joint fit of all th
three thermal properties leads to a complete test of the M
f4 model with a minimum set of the parameter
$m,a,Tc ,CB%. Here no order parameter saturation was
cluded since its correction over the fitting range was sma

To make sure that no particular measurement domin
the joint fit, a proper weighting is needed to balance une
numbers of the experimental data. We chose the follow
weighting in order to normalize thex2 by the number of data
points:

x25
N

3 S xx
T*

2

Nx
T*

1

xC
V*

2

NC
V*

1
xDrL,V

2

NDrL,V
D , ~75!

whereN5Nx
T*
1NC

V*
1NDrL,V

. In the joint fit, xT* and CV*

were fit against temperatureT while uDrL,Vu was fit against
reduced temperatureutu, andm,a,CB , andTc were adjusted.
The joint fit results are shown in Fig. 5 and Table II. We no
that in the joint fit the uncertainties inm and a are much
smaller than in the individual fits, even though the over
goodness of fit is worse in the joint fit. These improved u
certainties inm anda also lead to the improved uncertaintie
in the critical amplitudes and the fluctuation-induced ba
ground for specific heat.

Shown as dashed lines in Fig. 5 are the Wegner exp
sions to first order with the critical amplitudes,G0

6 andG1
6 ,

A0
6 andA1

6 , B0 andB1, calculated from the MSRf4 model.
Bagnuls and Bervillier@2# have argued that the validity rang
of any f4 model is upper bounded when the difference b
tween the calculations of the model and the Wegner exp
sion to first order becomes significant. Based on this ar
ment, the validity range of the MSRf4 model is utu.1
31022. However, it is interesting to see that the MSRf4

model provides a good fit beyondutu5131022 to the ex-
perimental measurements of the isothermal susceptib
both above and belowTc and the specific heat aboveTc .
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ZHONG, BARMATZ, AND HAHN PHYSICAL REVIEW E 67, 021106 ~2003!
Close toTc , the susceptibility data forT.Tc and the
specific heat data for bothT,Tc andT.Tc deviate slightly
from the theoretical prediction. These deviations can be
tributed to a gravity-induced density stratification. Since
specific heat was measured as an average of the whole
while the susceptibility was measured locally across a d
sity sensor, there was a stronger gravity effect in the m
suredCV thanxT . The gravity effect onxT(T,Tc) is about
a factor of 5 smaller than that onxT(T.Tc) because of the
difference inxT magnitudes. WhenTc is used as an adjust
able parameter, the individual fits of susceptibility and s
cific heat tend to skewTc such that the difference betwee
the experimental measurements and theoretical predictio
minimized because of the shift in reduced temperature
the measurements. TheTc determined from the fits of the
specific heat~Fig. 3! and susceptibility data~Fig. 1! tends to
be higher and lower, respectively, than it should be. T
tendency was approximately cancelled out in the joint

FIG. 5. A joint fit ~solid lines! to the susceptibility, specific hea
and coexistence curve. The fit used all the shownxT* data and the
data ofCV* and uDrL,Vu over the indicated range. The dashed lin
are the Wigner expansion to first order with the listed amplitude
Table II. The dot-dashed straight lines represent the asymptotic
dictions from the fit.
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shown in Fig. 5. The slight gravity effect on the experimen
measurements for 131024,utu,631024 can be clearly
seen in Fig. 5.

We mention that in Ref.@18# earlier measurements of th
susceptibility of3He, both above and belowTc , were com-
pared with the present data. Also in Table 1 of that referen
the amplitudes of susceptibility and coexistence curve d
and their ratios, such asG1

1/B1 andG1
1/G1

2 , obtained from
individual fits, were presented.

E. Predictions for correlation length and light scattering
intensity

By using u/u* , m, and a given in Table II, the dimen-
sionless correlation length can be calculated for any givenutu
using Eq.~56!. Figure 6 shows the dimensionless correlati
length versust calculated from the MSRf4 model for 3He.
The length scale to recover the dimensionalj0 is l 0, given by
Eq. ~73!. Thus one has a dimensionalj05j0* l 052.71 Å.
This value can be directly compared withj052.6 Å mea-
sured in an acoustic experiment Ref.@19#. Considering that
the experimentalj0 had 10% uncertainty, the agreement
very good.

The correlation length can also be determined from a li
scattering experiment. Miura, Meyer, and Ikushima me
sured the intensity of scattered light of3He fluid near its
critical point @13#. The intensity scattered per unit bea
length per unit solid angle in the fluid,I, is given by

I 5I 0AxTsin2fg~kj!, ~76!

whereI 0 is the beam intensity in the scattering region,f is
the angle between the electric field of the incident light a

n
e-

TABLE II. The dimensionless system-dependent parameters
3He. The adjustable parameters are obtained from the joint fit of
f4 model to the measuredxT* , CV* , anduDrL,Vu data of 3He.

Tc ~fit! 3.31554660.000005
u/u* ~fixed! 0.999
m3104 ~fit! 1.8260.02

a ~fit! 0.13260.001
CB ~fit! 3.7460.02

G0
1 0.14660.001

G0
2 0.029660.0002

G1
1 1.1360.01

G1
2 4.9560.05

A0
1 3.7760.05

A0
2 7.0560.09

A1
1 1.0160.01

A1
2 0.9360.01

Bcr 25.3960.08
B0 1.01960.002
B1 0.9360.01
j0

1 0.36860.002
j1

1 0.73260.007
j0

2 0.25960.001
j1

2 0.66560.006
6-10
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APPLICATION OF MINIMAL SUBTRACTION . . . PHYSICAL REVIEW E67, 021106 ~2003!
the wave vector of the scattered light,xT is the susceptibility,
andA5p2kBT(]n2/]r)T

2/l0
4 . Heren is the index of refrac-

tion of the fluid, andl0 is the vacuum wavelength of th
incident light. The functiong(kj) is, for kj<10, very accu-
rately given by the Ornstein-Zermike approximation
1k2j2)211h/2, wherek is the scattering wave vector,j is
the correlation length, andh is the critical exponent of the
fluctuation correlation at the critical point. In Ref.@13#, k
55.643104 cm21. At t5131026, the value of correlation
length can be estimated fromj52.71 Åt20.6351.63
31024 cm, hence the conditionkj(t5131026)59.2<10
was satisfied fort>131026. SinceB5I 0A sin2f is essen-
tially a constant for the experimental condition, one can
the knowledge ofxT andj, based on the MSRf4 model, to
fit experimental data of the scattered intensity, withB as an
adjustable parameter. As can be seen in Fig. 7, the agree

FIG. 6. The dimensionless correlation length versus redu
temperature calculated from the MSRf4 model for 3He. The dot-
dashed straight lines represent the asymptotic predictions from
fit.

FIG. 7. The intensity of light scattered by3He versus reduced
temperature. The theoretical calculatedI, using the MSRf4 model,
is adjusted with a constant amplitude forI 0A while u/u* , m, anda
were fixed from the values given in Table II.
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between the experimental data and theoretical calculatio
reasonably good.

IV. DISCUSSION

In this paper we have used parametric expressions to
culate the isothermal susceptibility, specific heat, coexiste
curve, and correlation length along the critical isochore a
coexistence curve from the asymptotic region to the cro
over region. All the critical leading amplitude ratios we
contained in the model, as listed in Table I. Using only tw
adjustable parameters in these theoretical expressions fo
critical contributions, we fit the theory to recently obtaine
experimental data for the isothermal susceptibility, spec
heat, and early experimental data of the coexistence cu
and light scattering intensity. The agreement between
theory and experimental measurements is good.

Further improvements to the minimal renormalizati
scheme are desired, especially the five-loop Borel resum
tions throughout the whole range of 0<u<u* . More accu-
rate Borel resummations at the fixed point should also lea
improved calculations ofzf(u* ) andz r(u* ) so that the re-
sultant critical exponents can be compared with other p
lished values~see Appendix A!. Theoretical insights on non
critical contributions are also needed in order to formul
more accurate analytical expressions for the background
tributions.

While the present minimal-subtraction renormalizati
model describes quite well experimental measureme
along the critical isochore and coexistence curve, there e
other alternative approaches to the crossover problem.
of them is the Landau crossover model~LCM! that has been
reviewed by Anisimovet al. @20#. This LCM model was re-
cently tested against the numerical simulation of the thr
dimensional Ising lattice gas model@21#. The LCM model
was also empirically improved in a phenomenological cro
over parametric model~CPM! @22#. There is a good agree
ment between the CPM model and the3He experimental
data of susceptibility and specific heat given in Appendix

NASA supported microgravity flight experiments@23,24#,
which are under preparation, will take experimental data
the susceptibility, specific heat, and coexistence curve in
asymptotic region. Combining these microgravity measu
ments in the asymptotic region with ground-based meas
ments in the crossover region should permit a rigorous tes
the predictions of recent renormalization theories.
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APPENDIX A: THE MSR f4 MODEL CONSTANTS

The field-theoretic functions,z r(u), zf(u), and bu(u),
and the amplitude functions,P1(u), Q(u), f 6(u), F6(u),
A(u), andB(u), are known up to five-loop order from ex
pansions aroundu50. However, these expansions do n
converge. To overcome this difficulty, these quantities w
expanded to two-loop order and then extrapolation te
were added to have the functions agree with the calculat
of high-order Borel resummations at the fixed point@1#. All
these functions have at least one extrapolation term to m
the function’s value at the fixed pointu* ; some functions
also have a second extrapolation term in order to match
value of their derivative at the fixed point. Listed in th
appendix are the values of these extrapolation coefficie
their origins, and recent improvements. The effects of th
coefficient values on the critical exponents and the fitt
quality in this work are discussed.

The extrapolation coefficients for the field-theoretic fun
tions z r(u), zf(u), and bu(u) in Eqs. ~6!–~8! are a1
53075, a2530 390, a3537.5, a4514.10, anda5531.85.
They are taken from Table 2 of Ref.@1#.

The fixed point value foru* 50.040 485 is solved from
the conditionbu(u* )50 using the given values fora4 and
a5. The latest publishedu* value forn51 is @4#

u* 50.040460.0003. ~A1!

The asymptotic critical exponents are linked to the expon
functionsz r , zf , andbu by

h52zf~u* !52zf* 50.0367, ~A2!

n5@22z r~u* !#215~22z r* !2150.629, ~A3!

v5
dbu~u,e51!

du U
u*

50.797. ~A4!

Once the critical exponentsh, n, and v are known, the
remaining important critical exponents can be obtained fr
scaling using

a5
122z r*

22z r*
50.112, ~A5!

b5
12zf*

2~22z r* !
50.326, ~A6!

g5
21zf*

22z r*
51.235, ~A7!

D5nv50.502. ~A8!

For n51, the latest theoretically calculated critical exp
nents given by Guida and Zinn-Justin@3# are
02110
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n50.630460.0013, ~A9!

h50.033560.0025, ~A10!

a50.10960.004, ~A11!

b50.325860.0014, ~A12!

g51.239660.0013, ~A13!

v50.79960.011, ~A14!

D5vn50.50460.008. ~A15!

A clear difference exits for the value of the critical expone
g which warrants further efforts from the theoretical comm
nity for improvements in the MSRf4 model calculation.

The amplitude functionQ„u( l )… for reduced temperature
is expressed as

Q„u~ l !…52E
u*

u( l )

du8
P1~u8!

bu~u8!
expE

u( l )

u8
du9

22z r~u9!

bu~u9!
.

~A16!

At the fixed pointu* , there is an identityn21522z r* that
simplifies Eq.~A16! and leads to

Q* 52nP1* . ~A17!

Krauseet al. @8# obtained the expression@Eq. ~KA28!#

dQ

du U
u*

5

2
dP

duU
u*

1Q*
dz r

duU
u*

v1n21 , ~A18!

with v5dbu /duuu* . They also provided a one-loop expre
sion for P(u) using a higher-order approximation@Eq.
~K3.2!# @8#

P1~u!5126u~11bPu!. ~A19!

The latest calculation by Larinet al. @4# for n51 gives

P1* 50.756860.0044. ~A20!

If the theoretically calculated critical exponentn for n51,
given by Guida and Zinn-Justin@3#, is used@4#, one has

b152nP1* 50.954260.0059, ~A21!

b253/222nP1* 50.545860.0059. ~A22!

For the extrapolation coefficients in the expression forQ(u),
Eq. ~18!, Krause et al. @8# determinedbQ528.2 andcQ
6-12
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APPLICATION OF MINIMAL SUBTRACTION . . . PHYSICAL REVIEW E67, 021106 ~2003!
57.66 such that Eqs.~A17! and ~A18! were satisfied with
the then calculatedP1* . The values of the extrapolation co
efficientsbQ520.32 andcQ56.24 have been readjusted
agree with the newQ(u* )50.9542. There is no value fo
dP/duuu* , so the newdQ/duuu* has been fixed to its old
value @8#.

For the amplitude functionf 6(u) in the expression of the
susceptibility, Eq.~26!, bx59.68 comes from Table 1 of Re
@8# anddx5211.18 comes from Table 4 of Ref.@7#.

For the amplitude function in the expression of the s
cific heat, Eqs.~42!, ~36!, and~37!, the five-loop approxima-
tion with a Borel resummation gives@4#

u* F2~u* !50.368760.0040. ~A23!

By combining the second part of Eq.~37! with Eqs.~A1! and
~A23!, the old interpolation coefficient,dF524.04 ~Table 4
of Ref. @7#!, becomesdF524.6736. The latest five-loop ca
culation also gives@4#

u* @F2~u* !2F1~u* !#50.417060.0036. ~A24!

Using Eqs.~A23! and ~A24!, one has

2u* F1~u* !50.048360.0076. ~A25!

By combining the first part of Eq.~37! with Eqs. ~A1! and
~A25!, the old interpolation coefficient,bF55.04~Table 1 of
Ref. @8#!, becomesbF525.07.

We modify Eq.~39! to be

B~u!5 1
2 19~11bBu!u2, ~A26!

with bB5220.68 in order to satisfy the five-loop Borel re
sumed results@Eq. ~L2.34!# @4#

B~u* !50.502460.001. ~A27!

All the calculations use the value ofu* derived in this paper.

TABLE III. The values of the various extrapolation coefficien
for the amplitude functions in the MSRf4 model.

Coefficient Value Appeared in

a1 3075 z r(u) for Zr(u)
a2 30390 z r(u) for Zr(u)
a3 37.5 zf(u) for Zf(u)
a4 14.10 bu(u) for Zu(u)Zf(u)
a5 31.85 bu(u) for Zu(u)Zf(u)
bQ 20.32 Q(u) for t( l )
cQ 6.24 Q(u) for t( l )
bx 9.68 f 1(u) for xT

1

dx 211.18 f 2(u) for xT
2

bF 25.0726 F1(u) for CV
1

dF 24.6736 F2(u) for CV
2

bB 220.6817 B(u) for CV
6

df 0.702 f f(u) for DrL,V
02110
-

Table III lists the values of the various extrapolation c
efficients for the amplitude functions in the MSRf4 model.
Table IV lists the values of the various amplitude functions
the fixed pointu* .

Equations~20! and ~26! provide a clear identification o
the leading critical divergence and crossover contribution
a multiplicative form. In the original expressions, the critic
divergence is contained implicitly in the integrals ofz r and
zf in Eqs.~15! and~23!. The calculatedz r(u* ) andzf(u* )
using Borel resummations at the fixed point lead to the cr
cal exponentsn and h that are slightly different from the
latest values given by Guida and Zinn-Justin. Because of
expressions in Eqs.~19! and ~26!, the critical exponent val-
ues given by Guida and Zinn-Justin are used for the lead
divergence. The inconsistency is only in the crossover p
in the integrands of@z r(u)2z r(u* )# and @zf(u)2zf(u* )#
that go to zero as the fixed point is approached.

APPENDIX B: DERIVATION OF SUSCEPTIBILITY
AMPLITUDES

Expressions for the Wegner expansion of the suscept
ity will be derived in this appendix, which were not pre
sented in previously published work. Multiplying Eq.~26! by
Eq. ~20! to the powerg yields

x6utug5x0@b6~ l !t0#g
exp@2Ff~ l !2gFr~ l !#

f 6~ l !
. ~B1!

In order to expand the exponent functions,Fr„u( l )… and
Ff„u( l )…, based on Eqs.~22! and~28!, one needs to expan
first the function for the flow equation,bu„u( l )…, to the first
order in @u( l )2u* #,

bu„u~ l !…5v@u~ l !2u* #1O$@u~ l !2u* #2%, ~B2!

where v5dbu /duuu* and bu(u* )50. Since Fr(u* )50
andFf(u* )50, one obtains

TABLE IV. The values of the various amplitude functions at th
fixed point u* . These values are used in the calculation of t
leading critical amplitude ratios withu* 50.040 485 .

Coefficient Value Appeared in

b1* 0.954260.0059 t( l ) in Eq. ~20!

b2* 0.545860.0059 t( l ) in Eq. ~20!

f 1* 0.9767 G0
1 for xT

1 in Eq. ~32!

f 2* 2.413 G0
2 for xT

2 in Eq. ~32!

2u* F1* 0.048360.0076 A0
1 for Cf

1 in Eq. ~45!

u* F2* 0.368760.0040 A0
2 for Cf

2 in Eq. ~45!

B* 0.502460.001 A* for Cf
6 in Eq. ~40!

f f* 3.175 B0 for DrL,V in Eq. ~54!
6-13
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Fr„u~ l !…5 lim
u( l )→u*

z r„u~ l !…2z r~u* !

v@u~ l !2u* #
@u~ l !2u* #

1O$@u~ l !2u* #2%

5
z r8~u* !

v
@u~ l !2u* #1O$@u~ l !2u* #2%,

~B3!

Ff„u~ l !…5 lim
u( l )→u*

zf„u~ l !…2zf~u* !

v@u~ l !2u* #
@u~ l !2u* #

1O$@u~ l !2u* #2%

5
zf8 ~u* !

v
@u~ l !2u* #1O$@u~ l !2u* #2%,

~B4!

f 6„u~ l !…5 f 6~u* !1 f 68 ~u* !@u~ l !2u* #1O$@u~ l !2u* #2%,
~B5!

b6„u~ l !…5b6~u* !1b68 ~u* !@u~ l !2u* #1O$@u~ l !2u* #2%.
~B6!

The expression b6„u( l )…gexp@2Ff„u( l )…2gFr„u( l )…#/
f 6„u( l )… is then expanded in terms of@u( l )2u* #, dropping
the higher orders, to give

x6utug5
x0~b6* t0!g

f 6~u* !

3H 12FgS z r8

v
2

b68

b6
D 1

zf8

v
1

f 68

f 6
GU

u*
@u~ l !2u* #J .

~B7!

The solution of the flow equation withbu(u) approximated
by Eq. ~B2! is

l v5
u~ l !2u*

u2u*
. ~B8!

By expressingl in terms of utu and dropping higher-orde
terms, one hasl 5utun/(b6* t0)n and

x6utug5
x0~b6* t0!g

f 6~u* !

3F12S g
z r8

v
2g

b68

b6
1

zf8

v
1

f 68

f 6
DUu*

u2u*

~b6* t0!nv utunvG .
~B9!

Comparing Eq.~B9! to the standard Wegner expansion to t
first term, see Eq.~31!, one obtains the critical amplitudes o
the susceptibility expressed analytically in Eqs.~32! and~33!
with D5nv.
02110
APPENDIX C: DERIVATION OF SPECIFIC HEAT
AMPLITUDES

A derivation of the critical amplitudes and constant bac
ground of the specific heat in the additive renormalizat
form will be given in this appendix. This derivation is con
sistent with the one for susceptibility given above and
different from the one given by Schloms and Dohm@6#.

First an expansion expression for the functionA„u( l )…
will be derived that is an approximate solution of Eq.~38!.
By expandingB(u) and z r(u) around u* and omitting
higher-order terms beyond the linear term, Eq.~38! becomes

l
dA~ l !

dl
54B~u* !14B8~u* !~u2u* !

1@a/n22z r8~u* !~u2u* !#A~ l !. ~C1!

Then Eq.~B8! is used to replace (u2u* ) with l v, yielding

l
dA~ l !

dl
5H1Ylv1~G1Zlv!A~ l !, ~C2!

where

H54B~u* !, ~C3!

G5
a

n
, ~C4!

Y54B8~u* !~u2u* !, ~C5!

Z522z r8~u* !~u2u* !. ~C6!

With a variable change of

v5
l vZ

v
, ~C7!

Eq. ~C2! becomes

v
dA~v !

dv
5

H

v
1

Y

Z
v1S G

v
1v DA~v !. ~C8!

The solution of Eq.~C8! is

A~v !5exp~v !vG/v

3FK12
H

v
GS 2

G

v
,v D2

Y

Z
GS 12

G

v
,v D G ,

~C9!

whereK1 is a constant to be determined through the init
condition. Expanding Eq.~C9! in v and keeping only the
linear terms ofl a/n and l v, one obtains

A~ l !5A~u* !1K2~u2u* !l v1K3l a/n, ~C10!

where Eq.~40! is used forA(u* ) and
6-14
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K25
1

~u2u* !
F nY

D2a
1A*

D

D2a

Z

vG
5

2n

D2a
@2B8~u* !2A* z r8~u* !#. ~C11!

K3 in Eq. ~C10! will be eliminated through initial condition
at the reference pointl 51,

K35A12A* 2K2~u2u* !, ~C12!

whereA1[A( l 51). SinceA1 has not been given as a fittin
parameter, it is calculated from the numerical solution of E
~38! with A(u50)522.

Substituting Eq.~C10! into Eq. ~42!, one has

Cf
6

C0
52exp@2Fr~ l !#K31exp@2Fr~ l !# l 2a/n

3@F6~ l !2A* 2K2~u2u* !l v#. ~C13!

Replacingl a/n in Eq. ~C13! with t/t0 from Eq. ~20! leads to

Cf
6

C0
52exp@2Fr~ l !#K31exp@~22a!Fr~ l !#@b6~ l !t0#autu2a

3@F6~ l !2A* 2K2~u2u* !l v#. ~C14!

Fr( l ), F6( l ), and b6( l ) are expanded according to Eq
~B3!, ~B5!, and ~B6!, respectively. Terms of order highe
than O$@u( l )2u* #2% or O( l 2v) are dropped in the expan
sion, and@u( l )2u* # is replaced using Eq.~B8!. By using
the approximation ofl v5utuD/(b6* t0)D, one finally has

Cf
6

C0
52K31~F6* 2A* !~b6* t0!autu2a

3H 11F 1

F6* 2A*
~F68 2K2!1~22a!

z r8

v
1a

b68

b6
GU

u*

3~u2u* !
utuD

~b6* t0!DJ . ~C15!

By comparing Eq.~C15! to the standard Wegner expansio
to the first term, see Eq.~44!, one obtains the analytica
expressions for the critical amplitudes of the specific h
given in Eqs.~45! and~46!. The critical background specifi
heat is also identified as

Bcr52C0K3 . ~C16!

APPENDIX D: CROSSOVER PARAMETER

From the equations for the first Wegner amplitudes of
susceptibility, specific heat, coexistence curve, and corr
tion length, Eqs.~33!, ~46!, ~55!, and ~60!, one notices that
the system-dependent part, (u* 2u)/(t0)D, is the same in
every expression. These expressions were derived by
02110
.
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panding the renormalization functions at the fixed pointu* .
Taking the expression for susceptibility, Eq.~B7!, as an ex-
ample, the crossover correction term does not contain
system-dependent parameters, such asu,m,a, and is propor-
tional to @u* 2u( l )#. Using Eq. ~B8!, one obtains forT
.Tc ,

12
u~ l !

u*
5F12

u~ l 51!

u*
G S t

b1* t0
D D

5S t

t3
1D D

, ~D1!

where

t3
1[b1* t0~12u/u* !21/D. ~D2!

We definet3
1 as the crossover reduced temperature that c

acterizes the crossover from the Ising fixed point to
Gaussian fixed point. Thus all the first Wegner coefficie
can simply be expressed in the formg1t3

2D , whereg1 is a
universal constant. In the case of susceptibility aboveTc ,
one has

g1~x1!5u* S g
z r8

v
2g

b18

b1
1

zf8

v
1

f 18

f 1
DU

u*
52.45. ~D3!

This simplified form for the first Wegner coefficients is ide
tical to the expressions given in Table III of Ref.@22# for the
case of an infinite cutoff wave number.

Now we will prove analytically, for the case ofu→u* ,
that the crossover temperaturet3 defined in Eq.~D2! is in-
dependent of (12u/u* ). Hence all the first Wegner coeffi
cients are independent of (12u/u* ). The temperature scal
ing factort0 defined in Eq.~21! is equal tom2/a in the limit
lim

u→u* Fr(u)50. Using the expansion technique applied
the Appendixes B and C we can find the dependences om
and a on (12u/u* ) and thus the dependence oft0 on (1
2u/u* ).

Using Eq.~B2!, one solves Eq.~8! for

~uZuZf
22!215zm~12u/u* !1/v, ~D4!

wherezm is an undetermined integration constant. Thus o
obtains from Eq.~4!,

m5~uZuZf
22!21A3u05zmA3u0~12u/u* !n/D. ~D5!

Using Eq. ~B2! and approximatingz r(u)5z r(u* )52
2n21, one solves Eq.~6! for

Zr~u!215za~12u/u* !(22n21)/v, ~D6!

whereza is an undetermined integration constant. Thus o
has from Eq.~5!,

a5Zr~u!21a05zaa0~12u/u* !(2n21)/D. ~D7!

Therefore, we can now obtain an expression for the temp
ture scaling factort0 near the fixed pointu* ,
6-15
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t05
~zmA3u0!2

zaa0
~12u/u* !1/D as u→u* . ~D8!

The integration constantszm and za are system dependen
and can be obtained by fitting experimental data to
theory. Therefore the crossover temperature can be alte
tively expressed as

t3
15b1*

~zmA3u0!2

zaa0
. ~D9!

The system-dependent crossover reduced temperaturt3
1

containingu0
2/a0 is identical tog defined in Eq.~3.19! of

Ref. @22# except for some scaling factors. This quantity
proportional to the Ginzburg number@20#. Using the values

of u,m,a given in Table II, we obtaint052.513231027

02110
e
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from Eq. ~21! and t3
150.21 from Eq.~D2!. This value com-

pares well with other crossover reduced temperature val
0.16 obtained from@geff( l )21#/(g21)50.5 with geff[
2d ln x/d ln t and 0.26 obtained from the conditionu( l )/u*
50.5. Heregeff can be calculated analytically using Eq
~20! and ~26!.

APPENDIX E: xT* , CV* , AND COEXISTENCE CURVE
EXPERIMENTAL MEASUREMENTS

We list in this appendix the dimensionless experimen
measurements of isothermal susceptibility, specific heat,
coexistence curve of3He. The ITS90 temperature standa
was used in Tables V, VI, and VII. Square brackets indic
powers of ten.
,

TABLE V. The dimensionless experimental measurements of the3He isothermal susceptibilityxT* . Tc

53.315 545 K was obtained from the joint fit ofxT* andCV* to the MSRf4 model. The index values 0, 19
and 8 correspond, respectively, toT.Tc , $T,Tc , liquid%, and$T,Tc ,vapor%.

T T/Tc21 xT* Index T T/Tc21 xT* Index

3.3157200 5.288@205# 2.763@104# 0 3.6000160 8.580@202# 3.990@100# 0
3.3158500 9.209@205# 1.524@104# 0 3.6000502 8.581@202# 3.939@100# 0
3.3158770 1.002@204# 1.278@104# 0 3.8000406 1.461@201# 2.126@100# 0
3.3159900 1.343@204# 9.468@103# 0 3.3149265 21.864@204# 1.151@103# 19
3.3161700 1.886@204# 6.006@103# 0 3.3144595 23.273@204# 8.291@102# 19
3.3161770 1.907@204# 5.600@103# 0 3.3137295 25.475@204# 3.271@102# 19
3.3163600 2.459@204# 4.477@103# 0 3.3135883 25.901@204# 3.665@102# 19
3.3164000 2.580@204# 4.457@103# 0 3.3125410 29.059@204# 2.145@102# 19
3.3166570 3.355@204# 2.966@103# 0 3.3122627 29.899@204# 1.868@102# 19
3.3173270 5.376@204# 1.670@103# 0 3.3096911 21.765@203# 9.418@101# 19
3.3175600 6.078@204# 1.469@103# 0 3.3050875 23.154@203# 4.708@101# 19
3.3179100 7.134@204# 1.256@103# 0 3.2969714 25.602@203# 2.344@101# 19
3.3179170 7.155@204# 1.180@103# 0 3.2824717 29.975@203# 1.225@101# 19
3.3179400 7.225@204# 1.194@103# 0 3.2630551 21.583@202# 7.408@100# 19
3.3180170 7.457@204# 1.120@103# 0 3.2566732 21.776@202# 6.555@100# 19
3.3185400 9.034@204# 9.472@102# 0 3.2323114 22.510@202# 4.455@100# 19
3.3188970 1.011@203# 7.790@102# 0 3.1836186 23.979@202# 2.696@100# 19
3.3202400 1.416@203# 5.268@102# 0 3.1064086 26.308@202# 1.717@100# 19
3.3221970 2.006@203# 3.450@102# 0 3.3144595 23.273@204# 6.347@102# 8
3.3239900 2.547@203# 2.587@102# 0 3.3137295 25.475@204# 3.326@102# 8
3.3259870 3.149@203# 1.970@102# 0 3.3135883 25.901@204# 3.080@102# 8
3.3295500 4.224@203# 1.407@102# 0 3.3125410 29.059@204# 1.820@102# 8
3.3341869 5.623@203# 9.850@101# 0 3.3122627 29.899@204# 1.436@102# 8
3.3404500 7.512@203# 7.046@101# 0 3.3096911 21.765@203# 9.300@101# 8
3.3487469 1.001@202# 4.980@101# 0 3.3051276 23.142@203# 4.865@101# 8
3.3487600 1.002@202# 4.979@101# 0 3.3050875 23.154@203# 4.533@101# 8
3.3596699 1.331@202# 3.535@101# 0 3.2969591 25.606@203# 2.937@101# 8
3.3745467 1.780@202# 2.480@101# 0 3.2824590 29.979@203# 1.586@101# 8
3.3897402 2.238@202# 1.884@101# 0 3.2630538 21.583@202# 6.585@100# 8
3.3999300 2.545@202# 1.642@101# 0 3.2323290 22.510@202# 4.100@100# 8
3.3999967 2.547@202# 1.620@101# 0 3.1836229 23.979@202# 2.486@100# 8
3.4402800 3.762@202# 1.014@101# 0 3.1064148 26.308@202# 1.600@100# 8
3.4999362 5.561@202# 6.540@100# 0 2.9840784 29.997@202# 9.556@201# 8
3.4999899 5.563@202# 6.540@100# 0
6-16
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TABLE VI. The dimensionless experimental measurements of the3He specific heatCV* . Tc

53.315 545 K was obtained from the joint fit ofxT* andCV* to the MSRf4 model.

T T/Tc21 CV* T T/Tc21 CV*

3.014570 29.078@202# 7.881 3.298910 25.017@203# 11.697
3.021686 28.863@202# 7.946 3.301335 24.286@203# 11.856
3.028699 28.652@202# 7.959 3.304018 23.477@203# 12.119
3.035582 28.444@202# 8.038 3.305181 23.126@203# 12.209
3.042383 28.239@202# 8.088 3.306067 22.859@203# 12.272
3.049135 28.035@202# 8.069 3.307219 22.511@203# 12.498
3.055774 27.835@202# 8.173 3.308159 22.228@203# 12.715
3.059940 27.709@202# 8.183 3.308833 22.024@203# 12.833
3.064174 27.582@202# 8.200 3.309386 21.858@203# 12.824
3.070900 27.379@202# 8.231 3.310214 21.608@203# 13.081
3.077578 27.177@202# 8.312 3.311035 21.360@203# 13.029
3.081723 27.052@202# 8.331 3.311577 21.197@203# 13.314
3.085888 26.927@202# 8.332 3.313179 27.135@204# 13.795
3.092441 26.729@202# 8.541 3.313675 25.639@204# 14.128
3.099071 26.529@202# 8.471 3.314163 24.167@204# 14.827
3.103159 26.406@202# 8.428 3.314846 22.107@204# 15.637
3.104792 26.357@202# 8.498 3.316036 1.482@204# 8.389
3.106435 26.307@202# 8.512 3.316098 1.669@204# 8.595
3.108071 26.258@202# 8.498 3.316160 1.856@204# 8.159
3.109702 26.208@202# 8.543 3.316217 2.028@204# 8.289
3.111329 26.159@202# 8.578 3.316279 2.215@204# 7.875
3.112949 26.110@202# 8.624 3.316339 2.396@204# 7.907
3.114572 26.062@202# 8.528 3.316400 2.580@204# 7.823
3.115721 26.027@202# 8.561 3.316405 2.595@204# 7.992
3.116924 25.991@202# 8.622 3.316461 2.764@204# 7.654
3.120951 25.869@202# 8.631 3.316512 2.918@204# 7.572
3.130580 25.579@202# 8.680 3.316562 3.068@204# 7.689
3.143237 25.197@202# 8.798 3.316627 3.264@204# 7.617
3.155746 24.820@202# 8.902 3.316690 3.454@204# 7.643
3.165016 24.540@202# 9.008 3.316757 3.656@204# 7.274
3.171098 24.357@202# 9.061 3.316827 3.868@204# 7.473
3.177146 24.174@202# 9.118 3.316893 4.067@204# 7.407
3.182946 23.999@202# 9.177 3.316943 4.217@204# 7.611
3.188913 23.819@202# 9.248 3.316995 4.374@204# 7.202
3.190517 23.771@202# 9.231 3.317088 4.655@204# 7.302
3.191638 23.737@202# 9.257 3.317206 5.011@204# 6.963
3.198331 23.535@202# 9.419 3.317399 5.593@204# 7.138
3.210298 23.174@202# 9.590 3.317663 6.389@204# 6.968
3.222044 22.820@202# 9.760 3.317885 7.059@204# 6.913
3.235858 22.403@202# 9.677 3.317972 7.321@204# 6.858
3.237019 22.368@202# 9.888 3.318097 7.698@204# 6.693
3.237827 22.344@202# 9.861 3.318225 8.084@204# 6.562
3.238887 22.312@202# 9.836 3.318429 8.699@204# 6.581
3.245184 22.122@202# 10.083 3.318670 9.426@204# 6.702
3.268550 21.417@202# 10.452 3.318830 9.909@204# 6.573
3.269553 21.387@202# 10.481 3.318919 1.018@203# 6.624
3.286051 28.896@203# 11.023 3.319077 1.065@203# 6.661
3.287624 28.421@203# 10.997 3.319217 1.108@203# 6.493
3.288580 28.133@203# 11.091 3.319447 1.177@203# 6.449
3.296766 25.664@203# 11.477 3.319738 1.265@203# 6.279
3.297686 25.386@203# 11.591 3.320283 1.429@203# 6.528
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TABLE VI. ~Continued!.

T T/Tc21 CV* T T/Tc21 CV*

3.320536 1.505@203# 6.285 3.375402 1.805@202# 4.917
3.320809 1.588@203# 6.270 3.376038 1.825@202# 4.857
3.320989 1.642@203# 6.261 3.376954 1.852@202# 4.862
3.321325 1.743@203# 6.209 3.378597 1.902@202# 4.845
3.321702 1.857@203# 6.096 3.380724 1.966@202# 4.836
3.322174 1.999@203# 5.919 3.382861 2.030@202# 4.820
3.322638 2.139@203# 6.104 3.385006 2.095@202# 4.812
3.323109 2.281@203# 5.910 3.387156 2.160@202# 4.803
3.323586 2.425@203# 5.944 3.389310 2.225@202# 4.789
3.324054 2.566@203# 5.853 3.391472 2.290@202# 4.774
3.324387 2.667@203# 5.711 3.393640 2.355@202# 4.766
3.324605 2.733@203# 5.867 3.395811 2.421@202# 4.765
3.324881 2.816@203# 5.874 3.397990 2.487@202# 4.738
3.325280 2.936@203# 5.802 3.400172 2.552@202# 4.736
3.325758 3.080@203# 5.776 3.402356 2.618@202# 4.727
3.326317 3.249@203# 5.741 3.404543 2.684@202# 4.720
3.327445 3.589@203# 5.682 3.406731 2.750@202# 4.718
3.328419 3.883@203# 5.649 3.408924 2.816@202# 4.710
3.329076 4.081@203# 5.485 3.411116 2.883@202# 4.701
3.329729 4.278@203# 5.666 3.412433 2.922@202# 4.666
3.331770 4.894@203# 5.507 3.413044 2.941@202# 4.661
3.332809 5.207@203# 5.440 3.413649 2.959@202# 4.737
3.333808 5.508@203# 5.465 3.414220 2.976@202# 4.723
3.334811 5.811@203# 5.397 3.414872 2.996@202# 4.681
3.335822 6.116@203# 5.382 3.415805 3.024@202# 4.678
3.336837 6.422@203# 5.337 3.417482 3.075@202# 4.674
3.337850 6.727@203# 5.329 3.419719 3.142@202# 4.661
3.338592 6.951@203# 5.308 3.421956 3.209@202# 4.660
3.339364 7.184@203# 5.301 3.424190 3.277@202# 4.651
3.340384 7.492@203# 5.277 3.426428 3.344@202# 4.645
3.341933 7.959@203# 5.241 3.428664 3.412@202# 4.631
3.344007 8.585@203# 5.199 3.430897 3.479@202# 4.630
3.346105 9.217@203# 5.161 3.433131 3.547@202# 4.632
3.348203 9.850@203# 5.142 3.435362 3.614@202# 4.647
3.350301 1.048@202# 5.112 3.437601 3.681@202# 4.628
3.352403 1.112@202# 5.085 3.439850 3.749@202# 4.626
3.354507 1.175@202# 5.051 3.442101 3.817@202# 4.620
3.356612 1.239@202# 5.022 3.444355 3.885@202# 4.609
3.357923 1.278@202# 5.015 3.446613 3.953@202# 4.597
3.358726 1.302@202# 4.987 3.448872 4.021@202# 4.592
3.359605 1.329@202# 5.006 3.451131 4.089@202# 4.594
3.361045 1.372@202# 4.992 3.453395 4.158@202# 4.584
3.363198 1.437@202# 4.967 3.455659 4.226@202# 4.576
3.365356 1.502@202# 4.949 3.459058 4.328@202# 4.579
3.367521 1.568@202# 4.931 3.463590 4.465@202# 4.570
3.369688 1.633@202# 4.909 3.468123 4.602@202# 4.557
3.371862 1.699@202# 4.884 3.472658 4.739@202# 4.562
3.374039 1.764@202# 4.875
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TABLE VII. The experimental measurements of the3He reduced densityDrL,V along the coexistence
curve. The data were provided by Professor H. Meyer as they were used in Ref.@12#. The index values 0 and
8 correspond to liquid and vapor, respectively.

12T/Tc uDrL,Vu Index T/Tc21 uDrL,Vu Index

2.848@204# 7.192@202# 0 7.580@201# 1.016@100# 0
3.128@204# 7.460@202# 0 8.190@201# 1.018@100# 0
3.445@204# 7.705@202# 0 8.790@201# 1.019@100# 0
3.836@204# 7.972@202# 0 9.390@201# 1.019@100# 0
4.460@204# 8.365@202# 0 9.980@201# 1.017@100# 0
5.319@204# 8.859@202# 0 8.433@204# 1.039@201# 0
5.322@204# 8.826@202# 0 8.995@204# 1.062@201# 0
5.963@204# 9.177@202# 0 9.060@204# 1.058@201# 0
6.638@204# 9.512@202# 0 1.221@203# 1.172@201# 0
7.279@204# 9.822@202# 0 1.515@203# 1.264@201# 8
8.332@204# 1.028@201# 0 1.611@203# 1.300@201# 8
9.630@204# 1.089@201# 0 1.647@203# 1.302@201# 8
9.658@204# 1.084@201# 0 1.729@203# 1.330@201# 8
1.279@203# 1.198@201# 0 1.791@203# 1.342@201# 8
1.399@203# 1.235@201# 0 1.931@203# 1.375@201# 8
1.430@203# 1.239@201# 0 2.075@203# 1.417@201# 8
1.518@203# 1.270@201# 0 2.315@203# 1.473@201# 8
2.171@203# 1.438@201# 0 2.382@203# 1.478@201# 8
2.421@203# 1.494@201# 0 2.661@203# 1.545@201# 8
3.255@203# 1.657@201# 0 2.849@203# 1.585@201# 8
3.862@203# 1.761@201# 0 3.085@203# 1.625@201# 8
4.066@203# 1.793@201# 0 3.693@203# 1.731@201# 8
4.868@203# 1.908@201# 0 4.713@203# 1.890@201# 8
6.266@203# 2.090@201# 0 5.169@203# 1.950@201# 8
7.261@203# 2.207@201# 0 6.004@203# 2.057@201# 8
9.366@203# 2.420@201# 0 6.811@203# 2.153@201# 8
1.319@202# 2.738@201# 0 7.311@203# 2.205@201# 8
1.834@202# 3.081@201# 0 8.153@203# 2.294@201# 8
2.285@202# 3.340@201# 0 1.314@202# 2.727@201# 8
2.854@202# 3.626@201# 0 1.500@202# 2.857@201# 8
3.135@202# 3.755@201# 0 1.934@202# 3.140@201# 8
3.496@202# 3.911@201# 0 2.485@202# 3.438@201# 8
3.783@202# 4.027@201# 0 2.880@202# 3.617@201# 8
4.348@202# 4.232@201# 0 3.157@202# 3.747@201# 8
5.230@202# 4.463@201# 0 3.505@202# 3.897@201# 8
5.320@202# 4.474@201# 0 3.827@202# 4.021@201# 8
5.559@202# 4.636@201# 0 4.388@202# 4.226@201# 8
6.988@202# 5.038@201# 0 5.599@202# 4.619@201# 8
7.140@202# 5.124@201# 0 7.054@202# 5.023@201# 8
7.389@202# 5.135@201# 0 7.474@202# 5.123@201# 8
8.380@202# 5.381@201# 0 8.388@202# 5.347@201# 8
9.589@202# 5.656@201# 0 9.639@202# 5.623@201# 8
1.025@201# 5.749@201# 0 1.467@201# 6.502@201# 8
1.034@201# 5.800@201# 0 2.096@201# 7.309@201# 8
1.339@201# 6.363@201# 0 2.627@201# 7.854@201# 8
1.710@201# 6.887@201# 0 3.267@201# 8.368@201# 8
2.227@201# 7.524@201# 0 3.927@201# 8.802@201# 8
3.106@201# 8.389@201# 0 5.547@201# 9.589@201# 8
4.970@201# 9.499@201# 0 6.773@201# 9.766@201# 8
5.850@201# 9.813@201# 0 8.272@201# 9.618@201# 8
6.980@201# 1.007@100# 0 9.960@201# 9.989@201# 8
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